Copied to
clipboard

G = C927C6order 486 = 2·35

7th semidirect product of C92 and C6 acting faithfully

metabelian, supersoluble, monomial

Aliases: C927C6, D913- 1+2, C9⋊C92C6, C9⋊C182C3, C93(C9⋊C6), (C9×D9)⋊3C3, C927C31C2, C33.12(C3×S3), (C3×D9).5C32, C91(C2×3- 1+2), C32.42(S3×C32), C3.5(S3×3- 1+2), (C3×3- 1+2).1C6, (C3×3- 1+2).11S3, C3.7(C3×C9⋊C6), (C3×C9⋊C6).1C3, (C3×C9).11(C3×S3), (C3×C9).14(C3×C6), SmallGroup(486,109)

Series: Derived Chief Lower central Upper central

C1C3×C9 — C927C6
C1C3C9C3×C9C92C927C3 — C927C6
C9C3×C9 — C927C6
C1C3C9

Generators and relations for C927C6
 G = < a,b,c | a9=b9=c6=1, ab=ba, cac-1=a4, cbc-1=b2 >

Subgroups: 238 in 66 conjugacy classes, 24 normal (18 characteristic)
C1, C2, C3, C3, S3, C6, C9, C9, C32, C32, D9, C18, C3×S3, C3×C6, C3×C9, C3×C9, C3×C9, 3- 1+2, C33, C3×D9, S3×C9, C9⋊C6, C2×3- 1+2, S3×C32, C92, C32⋊C9, C9⋊C9, C9⋊C9, C3×3- 1+2, C9×D9, C9⋊C18, C3×C9⋊C6, S3×3- 1+2, C927C3, C927C6
Quotients: C1, C2, C3, S3, C6, C32, C3×S3, C3×C6, 3- 1+2, C9⋊C6, C2×3- 1+2, S3×C32, C3×C9⋊C6, S3×3- 1+2, C927C6

Smallest permutation representation of C927C6
On 54 points
Generators in S54
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54)
(1 44 31 7 41 28 4 38 34)(2 45 32 8 42 29 5 39 35)(3 37 33 9 43 30 6 40 36)(10 23 52 13 26 46 16 20 49)(11 24 53 14 27 47 17 21 50)(12 25 54 15 19 48 18 22 51)
(1 24 33 49 39 18)(2 22 28 50 37 13)(3 20 32 51 44 17)(4 27 36 52 42 12)(5 25 31 53 40 16)(6 23 35 54 38 11)(7 21 30 46 45 15)(8 19 34 47 43 10)(9 26 29 48 41 14)

G:=sub<Sym(54)| (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54), (1,44,31,7,41,28,4,38,34)(2,45,32,8,42,29,5,39,35)(3,37,33,9,43,30,6,40,36)(10,23,52,13,26,46,16,20,49)(11,24,53,14,27,47,17,21,50)(12,25,54,15,19,48,18,22,51), (1,24,33,49,39,18)(2,22,28,50,37,13)(3,20,32,51,44,17)(4,27,36,52,42,12)(5,25,31,53,40,16)(6,23,35,54,38,11)(7,21,30,46,45,15)(8,19,34,47,43,10)(9,26,29,48,41,14)>;

G:=Group( (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54), (1,44,31,7,41,28,4,38,34)(2,45,32,8,42,29,5,39,35)(3,37,33,9,43,30,6,40,36)(10,23,52,13,26,46,16,20,49)(11,24,53,14,27,47,17,21,50)(12,25,54,15,19,48,18,22,51), (1,24,33,49,39,18)(2,22,28,50,37,13)(3,20,32,51,44,17)(4,27,36,52,42,12)(5,25,31,53,40,16)(6,23,35,54,38,11)(7,21,30,46,45,15)(8,19,34,47,43,10)(9,26,29,48,41,14) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54)], [(1,44,31,7,41,28,4,38,34),(2,45,32,8,42,29,5,39,35),(3,37,33,9,43,30,6,40,36),(10,23,52,13,26,46,16,20,49),(11,24,53,14,27,47,17,21,50),(12,25,54,15,19,48,18,22,51)], [(1,24,33,49,39,18),(2,22,28,50,37,13),(3,20,32,51,44,17),(4,27,36,52,42,12),(5,25,31,53,40,16),(6,23,35,54,38,11),(7,21,30,46,45,15),(8,19,34,47,43,10),(9,26,29,48,41,14)]])

42 conjugacy classes

class 1  2 3A3B3C3D3E3F3G6A6B6C6D9A9B9C···9M9N9O9P9Q9R···9W18A···18F
order1233333336666999···999999···918···18
size191122299992727336···6999918···1827···27

42 irreducible representations

dim11111111222336666
type++++
imageC1C2C3C3C3C6C6C6S3C3×S3C3×S33- 1+2C2×3- 1+2C9⋊C6C3×C9⋊C6S3×3- 1+2C927C6
kernelC927C6C927C3C9×D9C9⋊C18C3×C9⋊C6C92C9⋊C9C3×3- 1+2C3×3- 1+2C3×C9C33D9C9C9C3C3C1
# reps11242242162221226

Matrix representation of C927C6 in GL6(𝔽19)

050000
005000
1700000
000050
000005
0001700
,
070000
007000
100000
000001
0001100
0000110
,
0000016
0001600
0000170
0016000
1600000
0170000

G:=sub<GL(6,GF(19))| [0,0,17,0,0,0,5,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,17,0,0,0,5,0,0,0,0,0,0,5,0],[0,0,1,0,0,0,7,0,0,0,0,0,0,7,0,0,0,0,0,0,0,0,11,0,0,0,0,0,0,11,0,0,0,1,0,0],[0,0,0,0,16,0,0,0,0,0,0,17,0,0,0,16,0,0,0,16,0,0,0,0,0,0,17,0,0,0,16,0,0,0,0,0] >;

C927C6 in GAP, Magma, Sage, TeX

C_9^2\rtimes_7C_6
% in TeX

G:=Group("C9^2:7C6");
// GroupNames label

G:=SmallGroup(486,109);
// by ID

G=gap.SmallGroup(486,109);
# by ID

G:=PCGroup([6,-2,-3,-3,-3,-3,-3,224,68,8104,3250,208,11669]);
// Polycyclic

G:=Group<a,b,c|a^9=b^9=c^6=1,a*b=b*a,c*a*c^-1=a^4,c*b*c^-1=b^2>;
// generators/relations

׿
×
𝔽